The Keccak sponge function family

Guido Bertoni1, Joan Daemen1,2, Michaël Peeters1 and Gilles Van Assche1

1STMicroelectronics
2Radboud University

Pages

Documents

Notes

Software and other files

Figures

The figures above are available under the Creative Commons Attribution license. In short, they can be freely used, provided that attribution is properly done in the figure caption, either by linking to this webpage or by citing the article where the particular figure first appeared.

Links

New bounds on differential trails in Keccak-f

15 March 2017

In a joint work with Silvia Mella (STMicroelectronics and University of Milano), we propose a framework for bounding the weight of differential trails. We apply this on Keccak-f with widths of 200, 400, 800 and 1600 bits to show that no trail of weight less than 92 over 6 rounds exist in either of these Keccak-f instances. Should a 6-round differential trail be used as part of a collision attack, the ratio of complying pairs is thus guaranteed to be at most 2-92.

This work improves over our results of FSE 2012, both extending the coverage of differential trails both over the different Keccak-f widths and over a higher weight per round. In particular, Silvia was able to scan all 3-round trails up to weight 45. At 15 per round, and given the exponential growth of trail number per weight, this is a significant improvement over previous works.

Silvia presented her work at FSE 2017. The paper can be found here.