The Keccak sponge function family

Guido Bertoni1, Joan Daemen1,2, Michaël Peeters1 and Gilles Van Assche1

1STMicroelectronics
2Radboud University

Pages

Documents

Notes

Software and other files

Figures

The figures above are available under the Creative Commons Attribution license. In short, they can be freely used, provided that attribution is properly done in the figure caption, either by linking to this webpage or by citing the article where the particular figure first appeared.

Links

New Keccak mid-range core hardware implementation

13 February 2012

We released the VHDL code of a new mid-range core hardware implementation of Keccak.

The new implementation takes inspiration from the work of Bernhard Jungk and Jürgen Apfelbeck presented at ReConFig 2011. It cuts Keccak's state in typically 2 or 4 pieces, so naturally fitting between the fast core (1 piece) and Jungk and Apfelbeck's compact implementation (8 pieces). As a result, we get a circuit not as fast as the fast core but more compact.

The implementation is parametrized by Nb, which determines the amount of folding. With Nb=2, the Keccak-f[1600] permutation is computed in 74 clock cycles, and in 124 clock cycles with Nb=4. Higher values of Nb are possible, although not the main target of our new architecture.

We made some preliminary synthesis of this mid-range core and evaluated the corresponding throughput, with the same STM 130 nm technology used for the other implementations of Keccak. At 500MHz, we can reach a throughput of 5.6 Gbit/s in 28 kGE with Nb=2 or 3.6 Gbit/s in 22 kGE with Nb=4. As a comparison at the same frequency, the fast core processes 21.3 Gbit/s and requires 48 kGE. (In all cases, the throughput is for a rate of 1024 bits.)

We will report more data and a description of the architecture in an up-coming release of the Keccak implementation overview document.