
Note on zero-sum distinguishers of Kђѐѐюј- f

In [1], Jean-Philippe Aumasson and Willi Meier introduced zero-sum distinguish-
ers, a method to generate zero-sum structures for reduced-round Kђѐѐюј- f [1600],
the permutation underlying our SHA-3 submission Kђѐѐюј. Their paper contained
distinguishers for up to 16 rounds of Kђѐѐюј- f [1600]. Recently, Christina Boura and
Anne Canteaut extended this to 18 rounds in [6]. In this note we argue that the distin-
guishers are valid and are qualitatively different from generic methods, as they can
partition the set of inputs into sets of zero-sum structures of specific sizes. We also
put this in perspective, as generic methods allow generating zero-sum structures of
small sizes, and the distinguishers covering more rounds have extremely high com-
plexity (e.g., 21369 for 18 rounds).

Nevertheless, after the publication of [1], we decided to increase the number of
rounds of Kђѐѐюј- f . The logic underlying this decision is our adoption of the hermetic
sponge strategy, in which we tolerate no structural distinguisher for the permutation
used in the sponge construction. The strength or applicability of the distinguisher in
the context of the sponge construction plays no role in this aspect.

By increasing the number of rounds, we believe to have re-established the security
margin of Kђѐѐюј- f with respect to structural distinguishers.

1 The challenge
A zero sum structure for a function f is defined in [1] as a set Z of inputs zi that sum
to zero, and for which the corresponding outputs also sum to zero. The challenge is
now to generate such a set in an efficient way. Hence the challenge is the following.

Challenge: given a function f from n to m bits and an integer N, construct a set
Z of N inputs zi (or the set of corresponding f -images) such that:

∑
0≤i<N

zi = 0 and ∑
0≤i<N

f (zi) = 0.

Given all inputs in Z except one and the f -outputs of all inputs of Z but one,
the zero-sum structure allows the computation of the missing input and output by
simply summing over the known elements and hence without calling f . If the size
of Z is small, this may give an adversary an advantage in an aĴack. Clearly, the
advantage diminishes as the size of Z grows.

2 A generic method
In this section we present a generic method for constructing a zero-sum structure in-
spired byWagner’s algorithm for the generalized birthday problem in [7] and by the
aĴack against XHASH in [2], brought to our aĴention by Jean-Philippe Aumasson.
For a method to become a structural distinguisher for a particular function, it shall
have a lower complexity than this generic method.

Here is an outline of the method. We use the following notation: Xi = [xi| f (xi)]
T,

i.e., a column vector with components the bits of xi followed by the bits of f (xi).

1. Take N random values xi, compute f (xi) and form Xi = [xi| f (xi)]
T.

2. Compute the bitwise sum of the vectors Xi and call the sum A:

∑
0≤i<N

Xi = A . (1)
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3. Take p = n + m + ϵ random values yi with 0 ≤ i < p and ϵ a small integer,
compute f (yi) and form Yi = [yi| f (yi)]

T.

4. Solve the following linear system of n + m equations in the n + m + ϵ variables
ai over GF(2), with the bits of (Xi ⊕ Yi) serving as (fixed) coefficients:

∑
0≤i<p

ai(Xi ⊕ Yi) = A. (2)

5. For a solution (ai), form the set Z such that

zi =

{
yi if i < p and ai = 1
xi otherwise.

Clearly, the set Z is a zero-sum structure. Adding equations (1) and (2) gives:

∑
0≤i<N

Xi ⊕ ∑
0≤i<p

ai(Xi ⊕ Yi) = ∑
0≤i<p

(aiYi ⊕ āiXi)⊕ ∑
p≤i<N

Xi = ∑
0≤i<N

Zi = 0.

This method requires that p = n + m + ϵ ≤ N for some ϵ ≥ 0. The value of ϵ
determines the a priori probability that the system of equations (2) has a solution:
by increasing ϵ the probability that it has no solution decreases exponentially. If
N ≫ n + m, the probability of failure can be made arbitrarily small by increasing ϵ
and the complexity can be approximated by N executions of f .

The computational effort is the sum of:

• N + n + m + ϵ evaluations of f ,

• solving a system of n + m linear equations in n + m + ϵ variables over GF(2),
which can be done very efficiently, and

• taking the bitwise sum of N (n + m)-bit vectors.

3 The zero-sum distinguishers on Kђѐѐюј- f

The method for constructing zero-sum structures described in [1, 6] exploits the fact
that adding a round in Kђѐѐюј- f only doubles the degree of the algebraic expression
of the output bits in terms of the input bits, and only triples the degree of the algebraic
expression of the input bits in terms of the output bits.

We discuss here the aspects that are relevant for the computational complexity
of constructing the distinguishers and refer to [1, 6] for the details. We consider the
complexity of the method constructing the set Z or the set of corresponding outputs.

Compared to the generic method, the method in [1, 6] has the following features.

• First, as opposed to the generic method, this method is deterministic.

• Second, in this method the size of Z cannot be freely chosen (above some min-
imum) but is limited to powers of two (above some minimum).

• Third, the non-maximal degree of the twoparts of the (reduced-round)Kђѐѐюј- f
permutation can be used to create partitions of inputs in many different zero-
sum structures. The size of such partitions, using this method, is a multiple
of the size of the individual zero-sum structures. Producing a single zero-sum
structure still leads to the fastest distinguisher in this context.
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Rounds inv. + forw. N Rounds inv. + forw. N
6 2 + 4 210 12 5 + 7 2129

7 3 + 4 215 13 6 + 7 2244

8 3 + 5 218 14 6 + 8 2257

9 4 + 5 230 15 6 + 9 2513

10 4 + 6 260 16 6 + 10 21025

11 5 + 6 260 18 7 + 11 21370

Table 1: Size of zero-sum structures for reduced-roundKђѐѐюј- f [1600] given in [1, 6]

For constructing Z , one takes N states yi (that forms a vector space of limited
dimension) in some intermediate round and computes a number of rounds back-
wards to obtain the inputs zi. Clearly, the complexity of this option (the backward
option) is hence N times the computation of these inverse rounds. For constructing
the outputs corresponding to Z (the forward option), one must compute a number of
rounds forwards and the complexity is N times this forward computation. Table 1
lists the values of N for reduced-round versions of Kђѐѐюј- f [1600] for given number
of rounds. It also gives the number of inverse rounds and forward rounds.

As seen in Table 1, for all cases the number of inverse rounds is smaller than
the number of forward rounds. Hence at first sight the backward option seems to
be the most efficient one. However, mainly due to the complexity of the inverse
of θ [5], the computation of the inverse round of Kђѐѐюј- f [1600] has much higher
complexity than the round itself. We think it is safe to assume that the inverse round
takes twice as many computations as the forward round. In this light the forward
option becomes the most efficient one. As the number of forward rounds is greater
than half the number of rounds, the complexity of the method can be expressed as
the computational equivalent of at least N/2 calls to the function under aĴack.

4 Implications for Kђѐѐюј- f

For the values of N given in Table 1 (and any larger power of two), the method for
generating zero-sum structures of [1, 6] is more efficient than the generic method by
a factor 2. Hence, the zero-sum distinguishers of [1, 6] are valid, albeit with a very
small advantage. For instance, consider the case of Kђѐѐюј- f [1600] reduced to 18
rounds. The method of [6] for the smallest value of N would have complexity 21369

while for the generic method this is 21370. Note however that the generic method
additionally allows generating zero-sum structures with any size N > 3200 at the
cost of about N + 3200 calls to the function under aĴack.

We think it is very unlikely that the zero-sum distinguishers can result in the
speedupof actual aĴacks againstKђѐѐюј calling reduced-roundversions ofKђѐѐюј- f .
Still, the distinguishers described in [1, 6] show non-ideal properties of the (reduced-
round) Kђѐѐюј- f permutation and suggested us to increase the number of rounds in
Kђѐѐюј- f [4].

The main reason behind this is our adoption of the hermetic sponge strategy [3].
This strategy imposes Kђѐѐюј- f to be free from structural distinguishers, without
considering their strength or relevance for the Kђѐѐюј sponge function.

The existence of the distinguisher in [1] over 16 (out of 18) rounds ofKђѐѐюј- f [1600]
left only a security margin of 2 rounds. Moreover, wewanted to increase the security
margin against other possible distinguishers that start from the middle and compute
back- and forwards to get the corresponding in- and outputs. In this method adding
two rounds to Kђѐѐюј- f only increases the algebraic degree to be considered in the
aĴack by a factor 3. This is due to the fact that a Kђѐѐюј- f round has degree 2 and its
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inverse only 3 [5]. We estimated that other types of distinguishers may be found that
also exploit this fact or that the distinguishers may be further refined (e.g., as done
in [6]). Therefore we decided to address this in round 2 of the SHA-3 competition by
increasing the number of rounds (e.g., for Kђѐѐюј- f [1600] from 18 to 24 rounds).

The Kђѐѐюј Team, January 2010
Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
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